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Summary 
 

We have put forward the conjecture that the energy scale can vary from location 

to location, and showed that this simple idea can explain all those astronomical 

situations where dark matter is assumed to exist.  So, without invoking dark 

matter, our conjecture explains: the rotation curves of spiral galaxies; the 

velocities of galaxies in clusters; gravitational lensing; the acoustic peaks in the 

power spectrum of the cosmic microwave background; structure formation; and 

much more.  In addition our conjecture leads to a number of predictions that can 

be tested.  However, as yet we do not have a proper theory for variations of the 

energy scale.  In this paper we present our latest work towards establishing a 

firm basis for such a theory. 
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1x. Introduction 

 

1x.1 All physical quantities (such as length, speed, pressure) can be expressed in terms 

of a number of different scales or dimensions.  Dimensional analysis shows that only 

a small number of scales are needed to describe physical quantities with the main 

ones used by the International System of Units (SI) being: mass; length; time; 

electric current.  For our work here and in previous papers, we switch from a mass 

scale to an energy scale and we also assume that none of the other scales can vary.  

So, it is only the energy scale that can vary from place to place. 

 

1x.2 In the paper "On the variation of the energy scale: an alternative to dark matter" 

(JoKe1, 2015) we introduced the idea of variations of the energy scale to explain 

the rotation curves of spiral galaxies.  Additional papers extended this to cover all 

astronomical scenarios where dark matter is invoked, including clusters of galaxies, 

gravitational lensing, and the cosmic microwave background.  These showed that 

we do not need dark matter to explain any of the scenarios, variations of the energy 

scale provide an alternative explanation to all of them.  We summarised all our work 

in JoKe27 (2020). 

 

1x.3 It turns out that the astronomical scenarios, where dark matter is invoked, are either 

static, unchanging, or in equilibrium.  For galaxy rotation curves circular orbits inside 

a fixed dark matter halo are assumed; so, nothing is changing.  For gravitational 

lensing it is again assumed that a fixed dark matter halo exists.  Although galaxies 

are not static the distances and time-scales involved make it impossible to observe 

any changes.  This makes it extremely difficult to understand how dark matter 

behaves and to get at its properties. 

 

1x.4 One of the best scenarios for watching how dark matter behaves should be galaxy 

interactions.  If we could follow the collision of two galaxies, then we would have a 

complete understanding of how the baryonic matter and the dark matter interact with 

one another.  Unfortunately, all we have is a single snapshot of such collisions a  

single moment in time.  However, we may be able to use computer simulations to 

improve our theory or to eliminate some ideas. 
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2x. An  example:  galaxy  rotation  curves 
 

2x.1 Before getting too involved in the theory of variations of the energy scale, we need 

to explain what we are talking about and this is best done through the example of 

the rotation curves of spiral galaxies.  The shape of the rotation curve in the outer 

part of spiral galaxies is observed to be roughly flat, which is in sharp disagreement 

with the expected fall off for Newtonian gravity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Fig 1.  The rotation curve for spiral galaxy NGC 2403, based on data from the 

SPARC catalog.  The black diamonds are the observations; the solid blue curve is 

the expected curve for Newtonian gravitation. 

 

 

 

2x.2 Fig 1 shows the rotation curve for spiral galaxy NGC 2403, using data from the 

SPARC catalogue (Lelli et al, 2016).  The black diamonds are the observations; the 

solid blue line is the expected rotation curve based on the observed mass 

distribution.  The discrepancy between the observed and expected curves is clear; 

the usual explanation for this discrepancy is that the galaxy is embedded in a large 

halo of dark matter. 

 

2x.3 We work with Newton's law of gravity and that the rotational velocity is given by 
 

 𝒗𝟐

𝒓
 =   

𝑮 𝑴(𝒓)

𝒓𝟐
  (1) 

 

 where  M(r)  is the mass interior to radius  r .  (This is really only correct for systems 

that are spherically-symmetric but, as discussed later, this is a good approximation 
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for spiral galaxies.)  The left hand side of equation (1) is the centrifugal acceleration; 

the right hand side is the gravitational acceleration.  For circular orbits the two sides 

balance. 

 

2x.4 We can use equation (1) to predict the rotational velocity, v , from the observed 

baryonic mass distribution,  MB(r)  
 

 
 𝒗𝟐  =   

𝑮 𝑴𝑩(𝒓)

𝒓
  (2) 

 

 When we do this for NGC 2403 we get the blue line in Fig 1.  Clearly there is a 

problem in that the observed baryonic mass distribution and Newtonian gravity in 

the form of equation (2) do not explain the observed rotational velocity curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 2.  Cumulative mass (black diamonds) required to explain the observed rotation 

curve of spiral galaxy NGC 2403.  The solid blue line is the observed mass 

distribution. 

 

 

2x.5 The usual way to explain Fig 1 is to postulate the existence of a large spherical halo 

of (non-baryonic) dark matter.  Equation (8) then becomes 
 

 
 𝒗𝟐  =   

𝑮 {𝑴𝑩(𝒓) + 𝑴𝑫(𝒓)}

𝒓
  (3) 

 

 where  MD(r)  is the mass of non-baryonic dark matter interior to radius  r .  We 

cannot predict the amount of dark matter in advance.  Instead we simply invert 

equation (3) and use it to tell us how much dark matter is required to explain the 

observations 
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 𝑴𝑫(𝒓)  =  

𝒓 𝒗𝟐

𝑮
 −  𝑴𝑩(𝒓)  (4) 

 

 This is illustrated in Fig 2 (above).  The solid blue line shows  MB(r) , the observed 

amount of baryonic mass inside radius r .  The black diamonds show  MB(r)+MD(r) 

, the total mass inside radius  r  required to explain the observed rotation curve.  

Roughly five times as much dark matter than baryonic matter is needed.  Although 

the baryonic mass converges around 12 kpc, the dark matter mass is still increasing 

even at the outer limits of the galaxy. 

 

2x.6 Our conjecture of variations of the energy scale uses a totally different approach to 

explaining galaxy rotation curves.  If the energy scale varies across a galaxy, then 

(as explained fully later on) equation (8) is replaced by 
 

 
 𝒗𝟐  =   

𝑮 

𝒓
 
𝝃𝑨  𝑴𝑩(𝒓)

𝝃(𝒓)
  (5) 

 

 where  ξ  is the scalar function that describes the energy scale variation.  ξA  is the 

value interior to radius  r ; ξ(r) is the value at radius  r .  So the gravitational effect 

by a remote mass on an object depends on the ratio of the  ξ  function at the remote 

mass and the object. 

 Whereas the dark matter hypothesis introduces an additive factor (the dark matter 

halo) to explain galaxy rotation curves, our hypothesis of energy scale variations 

introduces a multiplicative factor (the ξ  function). 

 It is important to note that our  ξ  function acts on the mass and changes the effective 

mass of the attracting body.  It does not change the nature of Newtonian 

gravitational force, which still depends on the product of the masses and inversely 

on the square of the distance. 

 

2x.7 We can get at the values of the  ξ  function by inverting equation (5) as 
 

 
   

𝝃(𝒓)

𝝃𝑨
 =   

𝑮  𝑴𝑩(𝒓) 

𝒓  𝒗𝟐
   (6) 

 

 This is shown in Fig 3 for spiral galaxy NGC 2403.  The black diamonds are the 

values corresponding to the observations.  The striking feature of this plot is the 

almost perfect straight line formed by the data points.  This feature was unexpected 

and came as a complete surprise.  The solid red line is a straight line approximation 

to the black diamonds.  The straight line is not special to NGC 2403; all spiral 

galaxies show a similar linear relationship. 

 

2x.8 Having established the linear relationship for our  ξ  function, we can use this to 

construct our own rotation curve by using equation (5).  The result of this is shown 

in Fig 4.  This is the same as Fig 1, with the addition of the solid red line through the 

observed data points, which is our rotation curve.  The fit is clearly very good and 
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gives us considerable confidence that our conjecture of variations of the energy 

scale is worthy of further examination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 3.  Graph of the energy scale variation function,  ξ, for spiral galaxy NGC 2403.   

function.  The black diamonds are derived from equation (6) and they show a clear 

linear relationship; the solid red line is a linear fit.  All spiral galaxies show a similar 

linear relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 4.  The rotation curve for spiral galaxy NGC 2403.  The black diamonds are the 

observations; the solid blue line is the expected curve assuming Newtonian gravity; 
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the solid red line is the curve generated by assuming the straight line approximation 

for the  ξ function as shown in Fig 3; i.e. using equation (5). 

 

 

 

2x.9 For spiral galaxies the  ξ  function, describing the variation of the energy scale, has 

higher values near the galaxy centre and lower values outwards through the spiral 

arms.  For stars in the spiral arms the interior mass behaves as the actual (intrinsic) 

mass multiplied by the high value for the interior  ξ  function and divided by the low 

value of the local  ξ  function.  These values lead to the central mass behaving with 

a greatly enhanced mass, which in turn leads the high rotational velocity and flat 

rotation curve. 

 

2x.10 The observed linear relationship of the  ξ  function means we can predict the shape 

of the rotation curve of spiral galaxies.  We can use the observations of the inner 

part of the rotation curve and equation (6) to establish the slope of the straight line 

approximation to the ξ  function.  We can then predict the rest of the rotation curve 

using equation (5).  The solid red line in Fig 4 shows the result of this procedure for 

spiral galaxy NGC 2403.  Although not a perfect fit, the conjecture that the energy 

scale can vary results in a very good fit to the observed rotation curves of spiral 

galaxies.  We note that the dark matter hypothesis cannot predict the shape of 

rotation curves to the same extent. 

 

2x.11 This section has given a brief introduction to variations in the energy scale and 

shown how, by allowing the energy scale to vary from location to location, we can 

explain the observed rotation curves of spiral galaxies.  The  ξ  function that defines 

energy scale variations is a scalar function of position, i.e. a scalar field.  There is 

no direct evidence that such a scalar field exists nor that variations in the energy 

scale do occur.  But, similarly with the hypothesis of dark matter, there have been 

no direct detections of any dark matter particles. 

 Now we need to go back, look at our conjecture of energy scale variations, see how 

it fits in with existing physical theories, and see whether we can put it on a firm 

theoretical basis.  These tasks are what we will be considering over the next 

sections. 
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3x. The  conjecture 
 

3x.1 Our conjecture for variations of the energy scale can be stated very simply as: 

 

The energy scale can vary from location to location 

 

3x.2 We need to define what we mean by "energy scale".  Standard dimensional analysis 

expresses physical quantities in terms of a number of base quantities.  The 

International System of Units (SI) works with seven base quantities or dimensions; 

chief amongst these are length, time, mass, and electric current.  Instead of mass, 

we are going to work with energy as it covers a broader range of concepts than just 

mass.  Dimensional analysis uses a number of different words, including: dimension, 

unit, quantity and scale.  We are going to stick with the word "scale".  So we are 

going to be talking about variations of "the energy scale" and not "the energy 

dimension" or "the energy unit". 

 

3x.3 We assume that it is only the energy scale that varies.  All the other scales (length, 

time, electric current, etc) are assumed to be fixed which, amongst other things, 

means the speed of light is an absolute constant.  So no changes in this respect for 

Special Relativity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig  3y_1.  Situation for an energy E at location X, with no variation of the energy 

scale. 

 

 

3x.4 We start with an energy  E  at location  X  , an observer at location  P  , and no 

variation of the energy scale.  This situation is illustrated in Fig 3y_1.  Both an 

observer with the energy at  X  and an observer at  P  agree that the energy has a 

value  E .  
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3x.6 We need to introduce a notation that enables us to work with quantities, objects and 

observers that are placed at different locations.  We use the notation 
 

   𝑬𝑿
𝑷  ≡  𝑬Quantity At

By Observer
   (7) 

 

 where a subscript denotes the location of the quantity (object), and a superscript 

denotes the location of the observer.  So 𝑬𝑿
𝑷  is the value of the energy at location X  

as measured by an observer at location P. 

 

3x.7 For our conjecture we also need to introduce a scalar field, ξ, that defines the 

strength of the energy scale at each location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig  3y_2.  Situation for an energy E at location X and a remote observer at P, with 

a variation of the energy scale, ξ . 

 

 

3x.8 We consider an energy  E  at location  X  and an observer at location  P , as 

illustrated in Fig 3y_2.   It follows that our conjecture can be expressed as 
 

 𝝃𝑷 𝑬𝑿
𝑷  =  𝝃𝑿 𝑬𝑿

𝑿  =  𝝃𝑿 𝑬  (8) 
 

 where ξ  is the dimensionless function of position that describes how the energy 

scale varies. 

 ξX  is the value of the ξ  function at location X. 

 𝑬𝑿
𝑿  is the energy at X  as measured by an observer X. 

 ξP  is the value of the ξ  function at location P. 

 𝑬𝑿
𝑷  is the energy at X  as measured by an observer at P. 

 

3x.9 When the subscript and superscript are the same, the energy is interpreted as the 

"intrinsic energy"; in this case it is the energy at X  as measured by an observer at 

X, i.e. both object and observer are at the same location.  Generally, we can drop 
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the subscripts and superscripts for intrinsic values.  However, for clarity in some 

situations, we may retain both subscripts and superscripts. 

 We note in equations like equation (8) that the subscript on the ξ  function agrees 

with the superscript on the quantity.  This is because we are relating a quantity at a 

given location with the measurements of observers at different locations.  This is 

more apparent if we extend equation (8) to include location  Q 

 

 𝝃𝑿 𝑬𝑿
𝑿  =  𝝃𝑷 𝑬𝑿

𝑷  =  𝝃𝑸 𝑬𝑿
𝑸  (9) 

 

 The subscript on the energy,  E , is the same throughout as we are talking about the 

energy at a particular location; whereas the subscript on  ξ  agrees with the 

superscript on  E  as we are talking about observers at different locations. 

 

3x.10 As defined above, ξ  is a dimensionless scalar field; it is not a pure constant as its 

value can change from location to location.  But, as a scalar, it is Lorentz invariant, 

which again has implications for Special Relativity.  Also, and unlike quantities that 

contain energy as part of their dimensions (e.g. energy density, pressure, 

momentum), ξ  is not the component of a vector or a tensor. 

 Also, as ξ  is dimensionless, it only has a subscript, denoting its location.  So  ξX  is 

the value of ξ  at location  X .  The concept of the value of  ξ  at a particular location 

as measured by an observer at another location is not required; its value is the same 

for all observers at all locations. 

 

3x.11 There is no absolute scale for our ξ  function, only relative values.  This is clear when 

we rewrite equation (8) as 
 

 
 𝑬𝑿

𝑷  =  (
𝝃𝑿

𝝃𝑷
 ) 𝑬𝑿

𝑿   (10) 

 

 In all equations & expressions involving energy quantities the ξ  function always 

appears as the ratio of pairs of ξ  values.  In practice this means we are free to 

normalise the ξ  function to an arbitrary value at a particular point; the values at other 

points then follow.  For galaxy NGC 2403 (covered in the previous section) the ξ  

function was normalised to a value of 1000 near the galaxy centre.  Hence the value 

of around 3.0 in Figure 3. 
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 Fig  3y_3.  Situation for a mass M at location X and a remote observer at location P, 

with a variation of the energy scale, ξ . 

 

 

3x.12 Energy has the dimensions M L2 T-2, (M:mass, L:length; T:time), and mass is 

associated with energy through Einstein's equation 
 

 𝑬  =   𝑴 𝒄𝟐  (11) 
 

 where c  is the speed of light.  As mentioned above, our conjecture means that it is 

only the energy scale that can change.  Hence we can use equation (11) to rewrite 

equation (8) in terms of mass as  
 

 𝝃𝑷 (𝑴𝑿
𝑷 𝒄𝟐)  =   𝝃𝑿 (𝑴𝑿

𝑿 𝒄𝟐)  (12) 

 or 

 𝝃𝑷 𝑴𝑿
𝑷   =  𝝃𝑿 𝑴𝑿

𝑿  =  𝝃𝑿 𝑴  (13) 

 or 

 
 𝑴𝑿

𝑷  =  𝑴 (
𝝃𝑿

𝝃𝑷
)  (14) 

 

 where  𝑴𝑿
𝑷  is the mass at  X  as measured by an observer at  P.  This is illustrated 

in Figure 3y_3 above.  It is equation (14) that we used earlier in our example of 

galaxy rotation curves; see equation (12) in section 2. 

 

3x.13 As density, ρ , has the dimensions of mass divided by volume, it follows that 
  

 𝝃𝑷 𝝆𝑿
𝑷   =  𝝃𝑿 𝝆𝑿

𝑿  =  𝝃𝑿 𝝆  (15) 
  

 where  𝝆𝑿
𝑷  is the density at  X  as measured by an observer at  P  , and  𝝆𝑿

𝑿  is the 

density at  X  as measured by an observer at  X. 

 

3x.14 It is not just energies, masses and densities that are affected by our conjecture but 

all quantities and constants that have energy as part of their units.  The energy of a 

photon involves Planck's constant and is given by 
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 𝑬  =   𝒉 𝝂  (16) 
 

 Planck's constant has the units of action (energy × time), hence in our new notation 
 

 𝝃𝑷 𝒉𝑿
𝑷   =   𝝃𝑿 𝒉𝑿

𝑿  =   𝝃𝑿 𝒉  (17) 
 

 where 𝒉𝑿
𝑷 is the value of Planck's constant at location X  as measured by an observer 

at P. 

 Similarly, for the gravitational constant we find 
 

 
 
𝑮𝑿

𝑷

𝝃𝑷
  =   

𝑮𝑿
𝑿

𝝃𝑿
 =   

𝑮

𝝃𝑿
  (18) 

 

 where 𝑮𝑿
𝑷 is the value of the gravitational constant at location X  as measured by an 

observer at P. 

 

3x.15 Our conjecture means that the values of all quantities that have energy as part of 

their units will appear to be different to observers in different locations.  The ratio of 

the different values is proportional to the ratio of the energy scales at the different 

locations.  This should be clear from equation (8) for energy and equation (13) for 

mass.  It applies, not just to individual objects like stars or galaxies, but to the 

constants of physics as well.  As in the above examples: Planck's constant appears 

to have a different value, as does the gravitational constant. 

 

3x.16 All physics equations balance, which means the scales (units) balance as well.  For 

example, if we have length divided by time (speed) on one side of an equation, then 

we must have length divided by time on the other side.  In most physical interactions, 

all the constituents are located in the same place (e.g. interactions within particle 

accelerators), which means it is impossible to detect any variations of the energy 

scale.  To detect variations in the energy scale we need the constituents to be placed 

in different locations.  The only situation we are aware of, where possible differences 

can be measured, is the gravitational interaction between objects at different 

locations.  For example, the gravitational interaction between the Earth and the Sun, 

or the rotation curve of a spiral galaxy. 

 

3x.17 Our general approach to handling expressions and equations is to replace all 

physical quantities by their intrinsic values, through the introduction of appropriate 

values of our ξ  function.  That is, where we have objects and observers in different 

locations, we use relations similar to equation (8) to replace every quantity by its 

value as measured by an observer at the same location.  This should become clear 

in the next section, where we discuss the gravitational interaction of point masses. 
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4x. Gravity  for  point  masses 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig  4y_1.  Gravity between two masses, with no variation of the energy scale. 

 

 

4x.1 Newton's theory of gravitation states that the force  F  between mass  m  at location  

X  and mass  M  at location  A  a distance  r  away is 
 

 
𝑭  =   𝒎 𝒓̈  =  − 

𝑮 𝒎 𝑴

𝒓𝟐
  (19) 

 

 This is illustrated in Fig 4y_1.  The force is symmetrical in that the magnitude of the 

force on both masses is the same.  It follows that the acceleration on mass m  is 

given by 
 

 
𝒓̈  =  − 

𝑮 𝑴

𝒓𝟐
  (20) 

 

 

4x.2 We now look at how this equation changes for our conjecture of variations of the 

energy scale.   We remember that a subscript denotes the location of the quantity, 

and a superscriptcript denotes the location of the observer.  We use the same 

situation as above, but the labelling changes as illustrated in Fig 4y_2.  The 

acceleration experienced by mass  m  at location  X , as measured by an observer 

also at  X , is given by 
 

 
𝒓̈𝑿

𝑿   =  − 
𝑮𝑿

𝑿 𝑴𝑨
𝑿

𝒓𝟐
=  − 

𝑮

𝒓𝟐
 (𝑴𝑨

𝑨  
𝝃𝑨

𝝃𝑿
) =  − 

𝑮 𝑴

𝒓𝟐
 (

𝝃𝑨

𝝃𝑿
) (21) 

 

 where, as defined above, ξ  is the dimensionless function of location that describes 

the variation of the energy scale, and we have used equation (14) to transform the 

mass. 
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 Fig  4y_2.  Gravity between two masses with a variation of the energy scale. 

 

 

 The same situation as measured by an observer at  A, is given by 
 

 
𝒓̈𝑿

𝑨  =  − 
𝑮𝑿

𝑨  𝑴𝑨
𝑨

𝒓𝟐
=  − 

𝑴𝑨
𝑨

𝒓𝟐
 (𝑮𝑿

𝑿  
𝝃𝑨

𝝃𝑿
) =  − 

𝑮 𝑴

𝒓𝟐
 (

𝝃𝑨

𝝃𝑿
) (22) 

 

 where we have used equation (18) to transform G. 

 And the same situation as measured by a remote observer at  P, is given by 
 

 
𝒓̈𝑿

𝑷  =  − 
𝑮𝑿

𝑷 𝑴𝑨
𝑷

𝒓𝟐
=  − 

𝟏

𝒓𝟐
 (𝑮𝑿

𝑿  
𝝃𝑷

𝝃𝑿
) (𝑴𝑨

𝑨  
𝝃𝑨

𝝃𝑷
) =  − 

𝑮 𝑴

𝒓𝟐
 (

𝝃𝑨

𝝃𝑿
) (23) 

 

 where we have used both equations (14) and (18). 

 So, we end up with the same result, as we must, irrespective of whether we consider 

location X  or location A, or remote location P. 

 We should also note that the units of acceleration are length divided by time 

squared; the energy scale is not involved.  So, naturally, the acceleration measured 

by all observers has to be the same. 

 

4x.3 The above section (4x.2) shows our general technique for handling equations where 

the quantities and observers are at different locations.  We use expressions, similar 

to equation (8), to replace every quantity with its intrinsic value, i.e. the value of the 

quantity as measured by an observer at the same location.  This process introduces 

various values of our dimensionless function of position, ξ. 

 

4x.4 In potential theory the force is the gradient of the scalar potential and conversely the 

potential energy is the integral of the force.  So, in principle we can get at the 

gravitational potential by integrating equation (19), which for our conjecture is 

replaced by equation (21).  However,  ξ  is a function of position, which makes it 
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difficult to simply integrate equation (21) to get at the gravitational potential.  We can 

make this clearer by writing equation (21) as 
 

 
𝒓̈  =  − 𝑮 𝑴 𝝃𝑨  ( 

𝟏

𝒓𝟐  𝝃𝑿(𝒓)
 )  (24) 

 

 We do not yet have a theory for energy scale variations.  We do not know the 

functional form of our  ξX(r)  function and so cannot integrate this equation.  This is 

discussed further in the next section on potential theory. 

 

4x.5 It is instructive to look at the gravitational force.  We stick with our same arrangement 

of masses and locations.  The force on mass  m  at  X  due to mass  M  at  A  as 

measured by an observer at  P  is, by extending equation (23) 
 

 
𝑭𝑿

𝑷  =  𝒎𝑿
𝑷  𝒓̈𝑿

𝑷  =  𝒎𝑿
𝑿 (

𝝃𝑿

𝝃𝑷
) 𝒓̈𝑿

𝑷  =  − 
𝑮 𝑴 𝒎

𝒓𝟐
 (

𝝃𝑨

𝝃𝑷
) (25) 

 

 It is interesting that, although we are talking about the force at  X , this equation does 

not involve  ξX  , the value of the energy scale at  X . 

 

4x.6 The following table gives the force for the full set of locations and observers, i.e. 

mass  m  at  X ; mass  M  at  A ; remote observer at  P .  The entries follow from our 

relation for force 
 

 𝝃𝑿  𝑭𝑿
𝑿   =   𝝃𝑨  𝑭𝑿

𝑨  =   𝝃𝑷  𝑭𝑿
𝑷 (26) 

 and 

 𝝃𝑿  𝑭𝑨
𝑿   =   𝝃𝑨  𝑭𝑨

𝑨  =   𝝃𝑷  𝑭𝑨
𝑷 (27) 

 

 where we remember that a superscript denotes the location of the quantity, and a 

subscript the location of the observer. 

 

Force Equation Description 

 𝑭𝑿
𝑿 − 

𝑮 𝑴 𝒎

𝒓𝟐
 (

𝝃𝑨

𝝃𝑿
) 

Force on m  at X  due to M  at A , 

as measured by X 

 𝑭𝑿
𝑨 − 

𝑮 𝑴 𝒎

𝒓𝟐
  

Force on m  at X  due to M  at A , 

as measured by A 

 𝑭𝑿
𝑷 − 

𝑮 𝑴 𝒎

𝒓𝟐
 (

𝝃𝑨

𝝃𝑷
) 

Force on m  at X  due to M  at A , 

as measured by P 

 𝑭𝑨
𝑿 + 

𝑮 𝑴 𝒎

𝒓𝟐
 

Force on M  at A  due to m  at X , 

as measured by X 

 𝑭𝑨
𝑨 + 

𝑮 𝑴 𝒎

𝒓𝟐
 (

𝝃𝑿

𝝃𝑨
) 

Force on M  at A  due to m  at X , 

as measured by A 
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Force Equation Description 

 𝑭𝑨
𝑷 + 

𝑮 𝑴 𝒎

𝒓𝟐
 (

𝝃𝑿

𝝃𝑷
) 

Force on M  at A  due to m  at X , 

as measured by P 

 

 

 

 

4x.7 Gravity and Newton's 3rd Law 

 It is clear from the above table that, for the remote observer P, Newton's 3rd Law 

(action and reaction are equal and opposite) is broken.  The force at X is not equal 

and opposite to the force at A 
 

  𝑭𝑿
𝑷   ≠  −𝑭𝑨

𝑷 (28) 
 

 Instead, the table also shows that 
 

  𝑭𝑿
𝑨  =  −𝑭𝑨

𝑿 (29) 
 

 i.e. the force on m  at X  as measured by A  is equal and opposite to the force on M  

at A  as measured by X . 

 

4x.8 In summary, we still have Newton's theory of gravity.  It still depends on the product 

of the masses and on the inverse square of the distance.  What we have though is 

the additional complication of our ξ  function.  What we now require is a theory that 

defines the nature of the ξ  function and the variations of the energy scale. 
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5x. Another  look  at  mass 
 

5x.1 In the previous section we looked at point masses.  However, most masses occur 

not as points but as extended bodies with different shapes and with varying 

densities.  We now consider how our conjecture changes the way we have to work 

with such bodies.  We also work with a simple physical situation, with no relativistic 

complications. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Fig 5y_1.  Mass increment at location X and a remote observer at location P, with 

no variation of the energy scale. 

 

 

5x.2 We consider a small increment of mass, ΔM  at location X; volume element ΔV  and 

density ρ, as illustrated in Fig 5y_1  The mass increment is clearly given by 
 

 𝜟𝑴  =   𝝆 𝜟𝑽 (30) 
 

 This is the mass as measured by observers at both  X  and  A . 

 

 

5x.3 Next we consider the same situation but with a variation of the energy scale.  ξX  is 

the value of the energy scale at location  X  and  ξA  the value at location A .  This is 

illustrated in Fig 5y_2. 
 

 For an observer with the mass at X, we have 
 

 𝜟𝑴𝑿
𝑿   =   𝝆𝑿

𝑿  𝜟𝑽 (31) 
 

 where  𝜟𝑴𝑿
𝑿  is the increment in mass at location  X  as measured by an observer 

at  X ;  𝝆𝑿
𝑿  is the density at  X  as measured by an observer  at  X . 
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 Fig 5y_2.  Mass increment at location X and a remote observer at location P, with a 

variation of the energy scale. 

 

 

 For a remote observer at location P, we have 
 

 𝜟𝑴𝑿
𝑨   =   𝝆𝑿

𝑨   𝜟𝑽 (32) 
 

 where  𝜟𝑴𝑿
𝑨  is the increment in mass at location  X  as measured by an observer 

at  A ;  𝝆𝑿
𝑨  is the density at  X  as measured by an observer  at  A . 

 

 Our conjecture, equation (13), means 
 

 𝝃𝑿 𝜟𝑴𝑿
𝑿   =   𝝃𝑨 𝜟𝑴𝑿

𝑨 (33) 
 

 Hence 

 
 𝜟𝑴𝑿

𝑨   =   (
𝝃𝑿

𝝃𝑨
)  𝜟𝑴𝑿

𝑿 (34) 

 and 

 
  𝝆𝑿

𝑨   =   (
𝝃𝑿

𝝃𝑨
) 𝝆𝑿

𝑿 (35) 

 

 

5x.4 We now consider the mass of an extended body enclosed in volume  V , as 

illustrated in Fig 5y_3.  In this situation of no energy scale variation, the total mass 

is given by summing the individual increments within the volume, which is the same 

as integrating over the volume 
 

 
𝑴 =  ∑ 𝝆 𝜟𝑽  =   ∭ 𝝆 𝒅𝑽 (36) 

 

 



1-Aug-23 Towards a theory of energy scale variations Page  20 

 

www.varensca.com On the variation of the energy scale  29 JoKe29.pdf 
 

 This mass is what is measured by observers  X  within the volume, or by remote 

observers  A . 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 5y_3.  Mass of an extended volume V, a volume element at location X and a 

remote observer at location P, with no variation of the energy scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Fig 5y_4.  Mass of an extended volume V, a volume element at location X and a 

remote observer at location P,  with a variation of the energy scale. 

 

 

5x.5  We now consider the mass of an extended body with a variation of the energy scale.  

This is where things become a little more complicated.  The situation is illustrated in 

Fig 5y_4.  Every element in the volume is different not only because the density can 

be different, but also because the value of the energy scale can be different.  An 

observer at any location inside the volume does not see the "intrinsic" mass of the 

other elements, but only the mass modified by the variation of the energy scale.  

This means the apparent mass of every element appears different to every other 

element.  We can no longer obtain the mass by considering a single observer at an 

internal point  X  and simply adding up the masses of the other elements. 
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5x.6 However, we can consider an external observer at remote location A , for whom the 

total mass is given by 
 

 
𝝃𝑨 𝑴𝑽

𝑨  =  ∑ 𝝃𝑿 𝝆𝑿 
𝑿  𝜟𝑽  =   ∭ 𝝃𝑿 𝝆𝑿 

𝑿  𝒅𝑽 (37) 

 

 where  𝑴𝑽
𝑨  is the mass of the volume  V  as measured by observer  A .  In this case 

the subscript  V  refers to the whole volume and not to a single location. 

 

5x.7 We can now use equation (13) to get at the mass of the volume as measured by an 

observer inside the volume at  X  
 

 𝝃𝑿 𝑴𝑽
𝑿   =   𝝃𝑨 𝑴𝑽

𝑨 (38) 
 

 where  𝑴𝑽
𝑿  is the mass of the volume  V  as measured by observer  X . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig 5y_5.  Mass M at A inside a closed surface, surface increment dA at X, and a 

remote observer at location P,  with no variation of the energy scale. 

 

 

5x.8 Gauss's law for gravity 

 Gauss's law for gravity states (Wikipedia; Alonzo & Finn, p423) 

 "the gravitational flux through any closed surface is proportional to the enclosed 

mass".  We start with the situation of no variation of the energy scale, illustrated in 

Fig 5y_5.  A mass M lies inside the closed surface a distance r away from surface 

element dA at location X.  The gravitational field at X is 
 

 
𝒈  =   

𝑮 𝑴

𝒓𝟐
 (39) 

 

 The increment of area normal to the surface is 
 

 
𝒅𝑨  =   

𝒓𝟐 𝒅𝜴

𝒄𝒐𝒔 𝜽
 (40) 

 



1-Aug-23 Towards a theory of energy scale variations Page  22 

 

www.varensca.com On the variation of the energy scale  29 JoKe29.pdf 
 

 

 The vector dot product of these is  
 

 
𝒈 . 𝒅𝑨  =   

𝑮 𝑴

𝒓𝟐
 ∙  

𝒓𝟐 𝒅𝜴

𝒄𝒐𝒔 𝜽
 =   𝑮 𝑴 𝒅𝜴  (41) 

 

 The flux  F  is the integral of the dot product over the surface 
 

 
𝑭 =   ∬ 𝒈 ∙  𝒅𝑨   =   𝑮 𝑴 ∬ 𝒅𝜴  =   𝟒 𝝅 𝑮 𝑴 (42) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig 5y_5.  Mass M at A inside a closed surface, surface increment dA at X, and a 

remote observer at location P,  with a variation of the energy scale. 

 

 

5x.9 For our conjecture of variations of the energy scale we need to unpick Gauss's law.  

We consider a remote observer at remote location  P  measuring the gravitational 

flux through a small area of surface  dA  at location  X  arising from an element of 

mass  ΔM  at location  A  within the surface. 
 

 
𝜟𝑭𝑿

𝑷  =   
𝑮𝑿

𝑷  𝜟𝑴𝑨
𝑷

𝒓𝟐
 ∙  

𝒓𝟐 𝜟𝜴

𝒄𝒐𝒔 𝜽
 =  (

𝝃𝑷

𝝃𝑿
 𝑮𝑿

𝑿) (
𝝃𝑨

𝝃𝑷
 𝝆𝑨

𝑨 𝜟𝑽)  𝜟𝜴  (43) 

 or 

 
𝜟𝑭𝑿

𝑷  =  𝑮𝑿
𝑿  (

𝝃𝑨

𝝃𝑿
) 𝝆𝑿

𝑿  𝜟𝑽 𝜟𝜴  =   𝑮 𝝆 𝜟𝑽 (
𝝃𝑨

𝝃𝑿
) (44) 

 

 This result is somewhat similar to equation (23) above.  To obtain the total flux we 

have to sum over all the mass increments inside the surface and then sum over all 

the angular elements of the surface.  We cannot do this easily because of the two  

ξ  factors. 
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5x.10 We can make some progress by considering a surface of constant  ξS .  When we 

do that and apply the result of equation (38) we arrive at the total flux across surface  

S  as measured by a remote observer at  P 

 
𝑭𝑺

𝑷  =  𝟒 𝝅 𝑮 (
𝝃𝑷

𝝃𝑺
)  𝑴𝑺

𝑷  (45) 

 

 where   𝑴𝑺
𝑷  is the mass inside surface  S  as measured by  P .  This is our version 

of Gauss's law for gravitation. 
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6x. Potential  Theory 
 

6x.1 Newtonian gravity is generally taken to be covered by potential theory in that the 

gravitational field is a scalar potential field and the gravitational acceleration is the 

gradient of this scalar potential.  We need to understand how our conjecture of 

energy scale variations changes the standard results of potential theory as applied 

to the gravitational field.  What follows is based on Binney & Tremaine (2009), 

Potential Theory, section 2.1 General Results.  The notation also follows Binney & 

Tremaine and is slightly different from previous sections. 

 

6x.2 The gravitational acceleration at x  arising from a distribution of matter in region x' 

is given by (Binney & Tremaine equation 2.2) 
 

 
𝒈(𝒙)  =   𝑮 ∫ 𝒅𝟑𝒙′

𝒙′ − 𝒙

|𝒙′ − 𝒙|𝟑
 𝝆(𝒙′) (46) 

 

 For our conjecture of energy scale variations this becomes 
 

 
𝝃(𝒙) 𝒈(𝒙)  =   𝑮 ∫

𝒙′ − 𝒙

|𝒙′ − 𝒙|𝟑
 𝝃(𝒙′) 𝝆(𝒙′) 𝒅𝟑𝒙′ (47) 

 

6x.3 The gravitational potential is defined by (Binney & Tremaine equation 2.3) 
 

 
𝜱(𝒙)  =   −𝑮 ∫ 𝒅𝟑𝒙′  

𝟏

|𝒙′ − 𝒙|
 𝝆(𝒙′) (48) 

 

 For our conjecture of energy scale variations this becomes 
 

 
𝝃(𝒙) 𝜱(𝒙)  =   −𝑮 ∫

𝟏

|𝒙′ − 𝒙|
  𝝃(𝒙′) 𝝆(𝒙′) 𝒅𝟑𝒙′ (49) 

 

6x.4 Binney & Tremaine give the standard result (their equation 2.4) that differentiating 

with respect to x  (not x' ) 
 

 
𝜵𝒙 (

𝟏

|𝒙′ − 𝒙|
)  =   

𝒙′ − 𝒙

|𝒙′ − 𝒙|𝟑
 (50) 

 

6x.5 Applying equation (50) to equation (48) leads to the standard result 
 

 𝒈(𝒙)  =  −𝜵 {𝜱(𝒙)} (51) 
 

 For our conjecture of energy scale variations and applying equation (50) to equation 

(49) this becomes 
 

 𝝃(𝒙) 𝒈(𝒙)  =  −𝜵 {𝝃(𝒙)  𝜱(𝒙)} (52) 
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6x.6 Binney & Tremaine also show that taking the divergence of equation (45) leads to 

Poisson's Equation 
 

 𝜵𝟐{𝜱(𝒙)} =  𝜵 ∙ 𝒈(𝒙)  =  𝟒𝝅𝑮 𝝆(𝒙)  (53) 
 

 For our conjecture of energy scale variations this becomes 
 

 𝜵𝟐{𝝃(𝒙) 𝜱(𝒙)} =  𝜵 ∙ {𝝃(𝒙) 𝒈(𝒙)}  =  𝟒𝝅𝑮 {𝝃(𝒙) 𝝆(𝒙)}  (54) 

 

6x.7 In trying to understand galaxy rotation curves it has become common practice to 

measure the gravitational acceleration (and hence the expected rotational velocity) 

by solving Poisson's Equation (equation (53)).  If we can use observations to 

measure the density distribution, then we can solve Poisson's equation for the 

gravitational potential and differentiate this for the gravitational acceleration.  

However, in the context of energy scale variations this is no longer possible, 

because we have to solve equation (54) and we do not know the form of function 

𝝃(𝒙)  . 

 

 

 

6x.8 We can now rewrite the standard equations using the subscript notation of previous 

sections.  And we remember that subscripts are only needed for quantities with units 

involving energy; they are not required for distance, acceleration, etc.  So for an 

observer at location P, measuring the gravity at location P, arising from a distribution 

of matter at locations X , and replacing  x'-x  with r  

 

 Gravitational acceleration, from equation (47) 
 

 
𝝃𝑷 𝒈 =  𝝃𝑷 𝒓̈  =  − 𝑮 ∫

𝟏

𝒓𝟐
 𝝃𝑿  𝝆𝑿

𝑿  𝒅𝑽  (55) 

 

 Gravitational potential, from equation (49) 
 

 
𝝃𝑷 𝜱 =  −𝑮 ∫

𝟏

𝒓
 𝝃𝑿 𝝆𝑿

𝑿  𝒅𝑽  (56) 

 

 Gradient of scalar potential, equation (50) 
 

 𝝃𝑷 𝒈 =  𝝃𝑷 𝒓̈  =  −𝜵 {𝝃𝑷 𝜱} (57) 

 

 Poisson's Equation, equation (53) 
 

 𝜵𝟐{𝝃𝑷 𝜱}  =  𝟒𝝅𝑮 {𝝃𝑷 𝝆𝑷
𝑷}  (58) 
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6x.9 Finally, for a spherically-symmetric distribution of both matter ρ  and energy scale 

variation ξ , the radial acceleration from equation (55) becomes 
 

 
 𝝃𝑷 𝒓̈  =  − 

𝑮

𝒓𝟐
∫ 𝝃𝑿 𝒅𝑴𝑿

𝑿 
𝒓

𝟎

 (59) 

 

 where  𝒅𝑴𝑿
𝑿  is the mass of the shell at distance X  from the centre, and r is the 

distance of P  from the centre. 

 

6x.10 In summary, for our conjecture of variations of the energy scale, we replace some 

quantities with new versions multiplied by our energy scale factor, ξ : 
 

(a) for the gravitational potential 
 

 𝜱(𝒓)  →    𝝃𝑷(𝒓)  𝜱𝑿
𝑷(𝒓) (60) 

 

 where 𝜱𝑿
𝑨(𝒓)  is the gravitational potential at X  as measured by an observer 

at P. 
 

(b) for the density 
 

 𝝆(𝒓)  →    𝝃𝑷(𝒓)  𝝆𝑿
𝑷(𝒓) (61) 

 

 where 𝝆𝑿
𝑷(𝒓)  is the density at X  as measured by an observer at P. 

 and where we've added the "(r) " to remind ourselves that these are functions of 

position. 
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7x. Baryonic  mass  and  dynamical  mass 
 

7x.1 In many astronomical scenarios astronomers talk about the baryonic mass of a 

system and the dynamical mass of a system.  These are two different measures of 

what should be the same quantity.  However, the measures often differ with the 

dynamical mass being around five times greater than the baryonic mass.  We look 

at these two measures through the example of a galaxy cluster, where up to a 

thousand galaxies form a bound system often embedded in a large halo of X-ray 

emitting gas. 

 

7x.2 The baryonic mass of an object is the amount of matter that we observe to be 

present.  For a galaxy cluster we can observe the light from the individual galaxy 

members and, using a mass-to-light ratio, add up the total mass of all the galaxies.  

We can also observe the X-ray emission from the hot gas and again arrive at a total 

mass for the gas present.  Usually the mass of the gas exceeds the mass of the 

galaxies by at least a factor of ten.  The baryonic mass of the cluster is then the sum 

of the mass of the galaxy members and the mass of the gas. 

 

7x.3 The dynamical mass of an object is the amount of mass the object needs to have in 

order to explain its dynamic properties.  For a galaxy cluster the velocities of the 

galaxy members lead to a dynamic mass for the whole cluster based on the virial 

theorem.  The virial mass is the mass required to keep the galaxies together as a 

bound system.  If we assume the X-ray gas is in hydrodynamic equlibrium then 

calculations tell us how much mass is needed for gravity to balance the gas 

pressure.  Finally, weak gravitational lensing of remote objects by the galaxy cluster 

lead to another independent measure of the dynamical mass.  These three 

measures of the dynamical mass are usually in good agreement with one another, 

agreeing with one another to within a factor of two. 

 

7x.4 The discrepancy between the smaller baryonic mass and the larger dynamical mass 

is using explained by the existence of large amounts of dark matter.  By adding in 

five times as much dark matter as baryonic matter, there is sufficient gravity to 

explain away the observations.  A minority of astronomers also consider 

modifications to the law of gravity.  The best known of these is MOND, modified 

Newtonian dynamics, introducted by Milgrom (1963).  Here Newton's law of gravity 

holds in the high acceleration regime but switches to a modified law in the low 

acceleration regime.  The switchover acceleration is around 1.0×10-10  m/s2. 

 

7x.5 Our conjecture of variations of the energy scale gives us a completely different 

explanation.  The effect of a remote mass at X  on location P  is given by equation 

(14) 
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 𝑴𝑿

𝑷  =  (
𝝃𝑿

𝝃𝑷
) 𝑴𝑿

𝑿  (62) 

 

 where  𝑴𝑿
𝑿  is the baryonic mass, and  𝑴𝑿

𝑷  is the dynamical mass.  All we need is 

for the ratio of the two  ξ  values to be sufficiently large (around 5) and the mass 

discrepancy goes away. 

 

7x.6 For a spherically-symmetric distribution of matter the dynamical mass is given in 

terms of the baryonic mass by (following equation (58)) 
 

 
 𝑴𝒅𝒚𝒏  =   𝑴𝒓

𝒓  =   
𝟏

𝝃𝒓
 ∫ 𝝃𝑿 𝒅𝑴𝑿

𝑿 
𝒓

𝟎

 (63) 

 

 This is the mass that we use in Newton's law of gravity. 

 Each shell of matter is weighted by the value of our  ξ-function on that shell, and the 

whole sum is then divided by the value of the ξ-function at the point in question. 

 Our conjecture of variations of the energy scale means we are altering the effective 

mass.  We are not introducing any exotic forms of matter in the form of dark matter, 

and we are not changing the law of gravity. 
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8x. Another  look  at  galaxy  rotation  curves 
 

8x.1 We can now revisit galaxy rotation curves to see how our new work on mass and 

potential theory fits in.  We start by showing that relativistic effects can be ignored 

and then note that we can use the equations for spherical symmetry even though 

spiral galaxies are clearly not spherical. 

 

8x.2 It is well-known that the effects of the Special Theory of Relativity (SR) can be 

ignored when the velocity,  v , is much less than the speed of light,  c , (Schutz, 

2009) 
 

 𝒗

𝒄 
  ≪   𝟏   (61) 

 

 This also means that the  γ  factor of SR is very close to 1. 
 

 

𝜸 =  √𝟏 −  (
𝒗𝟐

𝒄𝟐
)   ≈  𝟏  (62) 

 

 The rotational velocity of the stars & gas in a spiral galaxy rarely exceed 300 km/s 

or 0.1% of the speed of light.  For example, Fig 1 shows NGC 2403 has a maximum 

rotational velocity of just below 140 km/s, leading to (rewriting equation (1)) 
 

 𝒗𝟐

𝒄𝟐 
  ~  𝟏𝟎−𝟔   (63) 

 

 We can safely conclude that the effects of SR play no part in the rotation curves of 

spiral galaxies. 

 

8x.3 It is also well-known that the effects of the General Theory of Relativity (GR) can be 

ignored when (Schutz, 2009) 
 

 𝑮 𝑴

𝑹 𝒄𝟐
  ≪   𝟏   (64) 

 

 For our galaxy: the mass,  M , is around 2×1041 kg (1011 solar masses); a typical 

distance to the spiral arms,  R , is around 5×1020 m (15 kpc); leading to 
 

 𝑮 𝑴

𝑹 𝒄𝟐
  ~  𝟑 × 𝟏𝟎−𝟕   (65) 

 

 We can safely conclude that the effects of GR play no part in the rotation curves of 

spiral galaxies. 
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8x.4 Equation (1), in section 2x.3 above, can be written as 
 

 𝒗𝟐

𝒄𝟐
 =   

𝑮 𝑴(𝒓)

𝒓  𝒄𝟐
  (66) 

 

 If the left hand side is small, then Special Relativity (SR) can be ignored; as 

mentioned in 2x.3 above.  If the right hand side is small, then General Relativity 

(GR) can be ignored; as mentioned in 2x.4 above.  It is interesting that the equation 

for the rotational velocity of spiral galaxies contains both the conditions that special 

relativity and general relativity can be ignored. 

 

8x.5 Spiral galaxies are not spherically symmetric; they are flattened disks.  However, 

most of the baryonic mass is concentrated in a central spherical bulge.  And the 

density of the stars & gas in the spiral arms drops off very rapidly with distance from 

the centre.  These two conditions mean that if we work with the equations of 

spherical symmetry, then the errors we introduce are less than 5% (Binney & 

Tremaine, 2008; Bovy, 2023). 

 

8x.6 We are assuming, of course, that there is no dark matter; so no wimps, no axions, 

no sterile neutrinos or whatever.  This means that the matter we observe is all there 

is. 

 For disk galaxies the light from the stars leads to a measure of the surface density, 

after applying a mass-to-light ratio.  Radio measurements of neutral hydrogen gas 

support these, as do measurements of molecular hydrogen.  All three are in good 

agreement and show that the density falls of exponentially away from the galaxy 

centre (Bovy, 2023). 

 Spectrographic observations provide radial velocities, leading to the rotation curve. 

 So, the data we have to work with is a set of surface density and velocity 

measurements. 

 

8x.7 For a disk galaxy we know the radial acceleration is given by 
 

 
𝒓̈  =  − 

𝒗𝟐

𝒓 
  (67) 

 

 and the increment of mass at distance  x  as measured by an observer at  X  is 
 

 𝒅𝑴𝑿
𝑿  =   𝟒 𝝅 𝝈𝑿

𝑿 𝒙 𝒅𝒙 (67) 
 

 

 where  𝝈𝑿
𝑿  is the surface density. 

 

8x.8 From our work on potential theory, we can now apply equation (58) to give 
 

 
 − 𝝃𝒓 𝒓̈  =   𝝃𝒓

𝒗𝟐

𝒓
  =    

𝑮

𝒓𝟐
∫ 𝝃𝑿 𝒅𝑴𝑿

𝑿 
𝒓

𝟎

 (68) 

or 
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  𝝃𝒓  =   

𝑮

𝒓 𝒗𝟐
 ∫ 𝝃𝑿  𝒅𝑴𝑿

𝑿 
𝒓

𝟎

 (69) 

 

 

8x.9 To solve this we split the integral into two parts  
 

 
  𝝃𝒓  =   

𝑮

𝒓 𝒗𝟐
 {∫ 𝝃𝑿  𝒅𝑴𝑿

𝑿 
𝑹

𝟎

 +   ∫ 𝝃𝑿  𝒅𝑴𝑿
𝑿 

𝒓

𝑹

}  (70) 

 

 We choose  R  to be close to the galaxy centre, where we can approximate the first 

integral as 
 

 
   ∫ 𝝃𝑿  𝒅𝑴𝑿

𝑿 
𝑹

𝟎

 ≈   𝝃𝑨 ∫   𝒅𝑴𝑿
𝑿 

𝑹

𝟎

  (71) 

 

 where  ξA  is the average value of the  ξ  function in the central region.  This leads to 
 

 
  𝝃𝑹  =   𝝃𝑨   

𝑮

𝑹 𝒗(𝑹)𝟐
 ∫   𝒅𝑴𝑿

𝑿 
𝑹

𝟎

  (72) 

 

 Having fixed the value of  ξ  at one point, we can then use equation (70) to determine 

the value at the next point and so gradually integrate outwards. 

 

8x.10 At the end of this process we have values of the  ξ  across the galaxy.  If we so wish 

we can treat these values as first approximations and repeat the process to obtain 

better approximations, including dropping the assumption of spherical symmetry 

and working with the full expressions for axial symmetry. 

 This work, as applied to the SPARC galaxies, is described in detail in viXra paper 

1903.0109 (JoKe 2019). 
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Cx. General  relativity 
 

 

Cx.1 In Einstein's general theory of relativity, gravity arises from the curvature of 

spacetime, which is defined by the metric tensor.  In the weak-field approximation, 

the metric tensor is described by the line element (Schutz, 1985) 
 

 𝒅𝒔𝟐  =  −(𝟏 − 𝟐 𝝌)𝒅𝒕𝟐 + (𝟏 + 𝟐 𝝌)(𝒅𝒙𝟐 + 𝒅𝒚𝟐 + 𝒅𝒛𝟐)  (70) 

 where 

 
𝝌 =  

𝑮 𝑴

𝒓 𝒄𝟐
  (42) 

 

 and  χ  is associated with the Newtonian gravitational potential,  φ, 
 

 
𝝋 =  −

𝑮 𝑴

𝒓
  (43) 

 

 and  M  is the remote mass. 

 

Cx.2 Equation (42) arises because the metric, equation (41), leads to the radial 

acceleration being given by (Schutz, 1985) 
 

 
𝒓̈  =  𝒄𝟐

𝝏𝝌

𝝏𝒓
 =  − 

𝑮 𝑴

𝒓𝟐
 =  −𝜵𝝋 (44) 

 

 

Cx.3 For our conjecture of energy scale variations, we require the gravitational 

acceleration, at location X, arising from mass M  at location A, to be given by 
 

 
𝒓̈ =  −𝜵𝝋 =  − 

𝑮 𝑴

𝒓𝟐
(

𝝃𝑨

𝝃𝑿
)  (51) 

 

 It is clear from sections 4x.2, 4x.3 & 4x.4 (above) that this expression for the 

acceleration is independent of the location of the observer, i.e. all observers will 

agree on its value.  This is because equation (51) depends on the value of the  ξ  

function at  X  ,  ξX , and at the remote mass,  ξA , but not on the value at the observer. 

 

Cx.4 Equation (51) implies the gravitational potential is given by 
 

 
𝝋 =  −𝑮 𝑴 𝝃𝑨  ∫

𝒅𝒓

𝒓𝟐 𝝃𝒓

𝑿

∞

  (45) 

 

 We cannot integrate this as  ξr  is an unknown function of the radial distance, r .  
However, this is not normally a problem as it is usually the gradient of the potential 

that we need and not the potential itself. 



1-Aug-23 Towards a theory of energy scale variations Page  33 

 

www.varensca.com On the variation of the energy scale  29 JoKe29.pdf 
 

 

Cx.5 To summarise, for our conjecture of energy scale variations, our weak-field metric 

is given by 
 

 𝒅𝒔𝟐  =  −(𝟏 − 𝟐 𝝌)𝒅𝒕𝟐 + (𝟏 + 𝟐 𝝌)(𝒅𝒙𝟐 + 𝒅𝒚𝟐 + 𝒅𝒛𝟐)  (46) 

 where 

 
𝝌 =   −

𝑮 𝑴 𝝃𝑨

𝒄𝟐
 ∫

𝒅𝒓

𝒓𝟐 𝝃𝒓

𝑿

∞

  (47) 

 

 

Cx.6 Equation (47) shows that we are introducing a new dimensionless scalar field,  ξ .  

This field defines the strength of the energy scale and how it varies from location to 

location. 
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Fx. Ideal  gas 
 

 

Fx.1 It is instructive to look at an ideal gas that is spread across two regions having 

different values for the energy scale.  The situation is illustrated in Fig 5.1. 

 

 

 

 

Fx.2 We consider two gas filled regions, A & B , that differ only in the values of the energy 

scale, ξA & ξB respectively.  We also have a remote observer at X .  It is only the 

energy scale that varies so the length and time scales are the same in both regions. 

 

Fx.3 For the two regions we assume 

a) the volumes are the same 

b) the intrinsic masses of the gas molecules are the same 

c) the average velocities of the gas molecules are the same 

 

Fx.4 The usual expression for the kinetic energy of the gas is 
 

 
𝑬 =  

𝟏

𝟐
 𝒎 𝒗𝟐  =  

𝟑

𝟐
 𝒌 𝑻  (48) 

 

 where v  is the average velocity of the gas molecules; k  is Boltzmann's constant. 

 Boltzmann's constant, k, (1.398×10-23 J K-1) has units of energy per degree and so 
 

 
𝒌𝑨

𝑿 =  𝒌𝑨
𝑨 (

𝝃𝑨

𝝃𝑿
)  =  𝒌 (

𝝃𝑨

𝝃𝑿
)  (49) 

 

 

Fx.5 For our conjecture of energy scale variations, the observer at X  measures the kinetic 

energy in region A as 
 

 
𝑬𝑿

𝑨 =  
𝟏

𝟐
  𝒎𝑿

𝑨  𝒗𝟐  =  
𝟏

𝟐
 𝒎 𝒗𝟐  (

𝝃𝑨

𝝃𝑿
)  (50) 

 

 
=   

𝟑

𝟐
  𝒌𝑿

𝑨  𝑻𝑨
𝑿 =   

𝟑

𝟐
 𝒌 𝑻𝑨

𝑿  (
𝝃𝑨

𝝃𝑿
)  (51) 
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Fx.6 Similarly for region B 
 

 
 𝑬𝑿

𝑩  =  
𝟏

𝟐
 𝒎 𝒗𝟐  (

𝝃𝑩

𝝃𝑿
)  =   

𝟑

𝟐
 𝒌 𝑻𝑩

𝑿  (
𝝃𝑩

𝝃𝑿
)   (52) 

 

 

Fx.7 Comparing equations (50), (51), (52) it is clear that all observers measure exactly 

the same temperature 
 

  𝑻𝑨
𝑿  =   𝑻𝑩

𝑿  = 𝑻   (53) 
 

 

Fx.8 The usual expression for the ideal gas law is 
 

 𝒑 𝑽 =  𝒏 𝑹 𝑻 = 𝒏 𝑨𝑵 𝒌 𝑻  (54) 
 

 where n  is the amount of gas in mols; R  the gas constant; AN is Avogadro's number  

 

Fx.9 For region A , observer X  measures 
 

 𝒑𝑿
𝑨 𝑽𝑿

𝑨  = 𝒏 𝑨𝑵 𝒌𝑿
𝑨 𝑻𝑿

𝑨  (55) 

 or 

 
𝒑𝑨

𝑨  (
𝝃𝑨

𝝃𝑿
)  𝑽 = 𝒏 𝑨𝑵 𝒌 (

𝝃𝑨

𝝃𝑿
)  𝑻  (56) 

 or 

 𝒑𝑨
𝑨 𝑽 = 𝒏 𝑨𝑵 𝒌  𝑻  (64) 

 

Fx.10 Similarly for region B 
 

 𝒑𝑩
𝑩 𝑽 = 𝒏 𝑨𝑵 𝒌  𝑻  (65) 

 

 So, we end up with 
 

 𝒑𝑨
𝑨  =  𝒑𝑩

𝑩 = 𝒑 (57) 
 

 This means that observers in the two regions measure the same pressure.  This is, 

of course, as it must be as we assumed the same mass and average velocity in both 

regions to begin with. 
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Fx.11 The observer at X  measures the same temperature in both regions, but different 

pressures (energy densities) 
 

 
 𝒑𝑿

𝑨 =  𝒑𝑨
𝑨  (

𝝃𝑨

𝝃𝑿
) = 𝒑 (

𝝃𝑨

𝝃𝑿
) (58) 

 

 
𝒑𝑿

𝑩  =  𝒑𝑩
𝑩  (

𝝃𝑩

𝝃𝑿
) = 𝒑 (

𝝃𝑩

𝝃𝑿
) (59) 

 

 The different pressures are balanced by the different values for Boltzmann's 

constant.  Hence, there is no flow of matter from high pressure to low pressure.  

Again, this also follows from the gas molecules having the same average velocity in 

both regions. 
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Jx. Movement  of  mass 
 

 

Jx.1 We can clarify our ideas of variations of the energy scale by considering what 

happens when a mass moves from one location to another. 

 

Jx.2 Case  1 

 We consider the variation of the energy scale to be attached to space.  This means 

every mass adopts the value of the energy scale at its location; the mass has no 

effect on this value.  We consider a mass  m  initially at location  X  that moves to 

location  Y, as measured by an observer at  A. 

 

Jx.3 Observer  A  measures the initial mass  Ti  as 
 

 
𝑻𝒊  =  (

𝝃𝑿

𝝃𝑨
) 𝒎𝑿

𝑿  =  (
𝝃𝑿

𝝃𝑨
)  𝒎  (60) 

 

 and the final mass  Tf  as 
 

 
𝑻𝒇  =  (

𝝃𝒀

𝝃𝑨
) 𝒎𝒀

𝒀  =  (
𝝃𝒀

𝝃𝑨
)  𝒎  (70) 

 

 

Jx.4 For conservation of mass to hold, the initial and final masses must be the same.  

Clearly, this is only possible if  
 

 𝝃𝑿  =   𝝃𝒀  (71) 
 

 i.e. the value of the energy scale at both locations must be the same, which means 

the energy scale cannot vary from location to location. 

 

Jx.5 This simple example shows us that variations of the energy scale cannot be 

attached to space-time locations. 

 

Jx.6 Case  2 

 Next, we consider the value of the energy scale to be attached to the mass rather 

than the location.  This means that when the mass moves the value of the energy 

scale moves with it.  We consider exactly the same situation as before.  A mass  m  

initially at location  X  that moves to location  Y, as measured by an observer at  A. 
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Jx.7 We end up with exactly the same equations.  The initial mass is given by equation 

(?6?), and the final mass by equation (60).  For conservation of mass to hold, we 

also end up with equation (70).  However, now our interpretation is different.  The 

value of the  ξ  function at  Y  is the same as that at  X  because the mass  m  has 

taken it there. 

 

Jx.8 This example shows us that our conjecture of variations in the energy scale can 

work, provided the value of the energy scale is attached to the energy (mass) itself 

and not to the the location. 

 

Jx.9 Case  3 

 We now consider what happens when a small mass moves between two other 

masses.  Consider a mass  M  at location  X, a mass  N  at location  Y, and our 

small mass  m  that moves from  X.  to  Y. 

 

Jx.10 Our observer at location  A  measures the initial total mass  Ti  as 
 

 
 𝑻𝒊   =   (

𝝃𝑿

𝝃𝑨
)  𝑴 +  (

𝝃𝒀

𝝃𝑨
)  𝑵 +  (

𝝃𝑿

𝝃𝑨
)  𝒎  (72) 

 

 

Jx.11 We know, from Case 2, that the value of the energy scale for mass  M  at location  

X  does not change when the small mass moves.  However, the same is not true for 

mass  N  at location  Y  when the small mass is mixed in. 

 Our observer measures the final mass as 
 

 
 𝑻𝒇   =   (

𝝃𝑿

𝝃𝑨
)  𝑴 + (

𝝃𝒀′

𝝃𝑨
)  𝑵 +  (

𝝃𝒀′

𝝃𝑨
)  𝒎  (73) 

 

 where the primes indicate the final state values. 

 

Jx.12 We demand that conservation of mass holds.  So 
 

 
  (

𝝃𝒀

𝝃𝑨
)  𝑵 +  (

𝝃𝑿

𝝃𝑨
)  𝒎 =   (

𝝃𝒀′

𝝃𝑨
)  𝑵 +  (

𝝃𝒀′

𝝃𝑨
)  𝒎  (74) 

 

 or 

 𝝃𝒀′  =   𝝃𝒀  −  (𝝃𝒀 − 𝝃𝑿) (
𝒎

𝑵 + 𝒎
) (75) 

 

 This demonstrates that our conjecture of variations in the energy scale continues to 

work when other masses are involved.  Equation (75) gives us the rule to calculate 

the new value of the energy scale when masses with different values combine. 
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Jx.13 Case  4 

 We are now in the position where the value of the energy scale at a location is 

determined by the mass at that location.  However, there is an immediate problem 

as to what we do when there is no mass present at a location.  The value cannot be 

zero as this would lead to infinities in equations (72) and (73).  Instead, we consider 

a background value, ξb. 

 

Jx.14 Our observer now measures an initial mass of 
 

 
 𝑻𝒊   =   (

𝝃𝑿 + 𝝃𝒃

𝝃𝑨 + 𝝃𝒃
)  𝑴 +  (

𝝃𝒀  +  𝝃𝒃

𝝃𝑨  +  𝝃𝒃
)  𝑵 +  (

𝝃𝑿  +  𝝃𝒃

𝝃𝑨  + 𝝃𝒃
)  𝒎  (76) 

 

 and a final mass of 
 

 
 𝑻𝒇   =   (

𝝃𝑿  +  𝝃𝒃

𝝃𝑨  +  𝝃𝒃
)  𝑴 +  (

𝝃𝒀′  +  𝝃𝒃

𝝃𝑨  +  𝝃𝒃
)  𝑵 +  (

𝝃𝒀′  +  𝝃𝒃

𝝃𝑨  +  𝝃𝒃
)  𝒎  (77) 

 

 where the primes indicate the final state values. 

 

 

Jx.15 We again impose conservation of mass.  So 
 

 
  (

𝝃𝒀  + 𝝃𝒃

𝝃𝑨  + 𝝃𝒃
)  𝑵 + (

𝝃𝑿  +  𝝃𝒃

𝝃𝑨  +  𝝃𝒃
)  𝒎  =   (

𝝃𝒀′  +  𝝃𝒃

𝝃𝑨  +  𝝃𝒃
)  𝑵 +  (

𝝃𝒀′  + 𝝃𝒃

𝝃𝑨  + 𝝃𝒃
)  𝒎  (78) 

 

 or 

 𝝃𝒀′  =   𝝃𝒀  −  (𝝃𝒀 − 𝝃𝑿) (
𝒎

𝑵 + 𝒎
) (79) 

 

 So, the background value of the energy scale cancels out and plays no part in 

equation (79). 

 

Jx.16 Equation (79) shows that if a mass with a low value of the energy scale moves to a 

mass with a high value, then the high value is reduced.  Similarly, when a high value 

mass moves to a low value, then the low value is increased.  So, over time we 

expect the highs and lows to get smoothed out. 

 

Jx.17 Equation (78) shows us that the 'effective' mass is unchanged when matter moves 

from one region to another.  If we have a large mass with a high energy scale value 

that is attracting material, then it continues to do so.  Even though its high value is 

being eroded, its pulling power is not diminished.   This is because the lowering of 

its  ξ  value is exactly balanced by the increase in mass, with the increase in the  ξ  

value of the infalling material.  So, once a region starts sucking in material then it 

continues to do so; small galaxies naturally grow into large galaxies. 
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Mx. Miscellaneous 
 

Mx.1 Energy Scale Variations and General Relativity 

 The metric tensor contains the gravitational potential, Φ, for the remote mass, M. 

 The form of Φ  is not specified but often Newton's formula for it is used 
 

 
𝜱 =  − 

𝑮 𝑴

𝒓
  (80) 

 

 

Mx.2 Re-examine Poisson's Equation 
 

 𝜵𝟐𝜱 =  𝟒 𝝅 𝑮 𝝆  (81) 
 

 In an expanding Universe an observer does not see a uniform density.  Distant 

regions appear to have a higher density. 

 The gravitation potential at the observer decreases as the Universe expands and ... 

 

Mx.3 FLRW metric 

 How far can we get assuming just the FLRW metric?  FLRW means the geometry 

of space is homogeneous and isotropic. 

 We should not work with velocities (or fractions of the speed of light) because the 

galaxies are not speeding away from one another; it is space that is expanding (with 

time). 

 The CMB (cosmic microwave background) identifies the temperature when 

electrons & protons combined to form neutral hydrogen.  The temperature was 

around 3,000K.  The CMB today has a temperature of 2.7K meaning the Universe 

has expanded by a linear factor of 1100 (volume by 1.3 billion). 

 The uniformity of the CMB shows the Universe has expanded by the same amount 

in all directions, i.e. has expanded isotropically.  This strongly suggests (but does 

not prove) that the expansion is also homogeneous. 

 

Mx.4 Welcome Back to the Museum of Dark Matter 

 Space-time is described well by the FLRW metric.   

 Is there some underlying principle that drives the Universe to follow the FLRW 

metric? 

 Is the Friedmann Equation correct, i.e. does the energy-momentum tensor control 

the growth of the scale factor?  Or is something else involved? 

 

Mx.5 Space-time 

 Space-time, i.e. space & time, is described well by the FLRW metric. 

 Space appears to be both homogeneous and isotropic, i.e. the geometry is both 

homogeneous and isotropic. 

 It is clear, from observations of objects such as planets, stars & galaxies, that the 

density of space is neither homogeneous nor isotropic.  However, it is claimed, that 
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if we go to large enough scales (~100Mpc), then the density can be treated as 

isotropic & homogeneous. 

 Observations (what observations?) are consistent with the geometry of space being 

flat and Euclidean.  If we could construct a large enough triangle across the 

Universe, then we would find the sum of the angles is 180 degrees. 

 The observed time dilation vs redshift relation is consistent with both GR (expansion 

of space) and SR (redshift => velocity) 
 

 𝜟𝒕𝒐 = (𝟏 + 𝒛) 𝜟𝒕𝒆  (82) 
 

 where  Δto  is the observed time interval, and  Δte  is the expected time interval. 
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12x. Discussion 
 

12x.1 ?? 
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