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Summary 
 

Many physical theories are based on a scalar potential field, where the 

gradient gives rise to the force or acceleration.  Separately, the hypothesis has 

been put forward that the energy scale can vary from location to location.  

Such energy scale variations have been used to explain the flat rotation 

curves of spiral galaxies and other astronomical observations, without 

requiring the existence of any dark matter.  This paper looks at what can be 

said about the gravitational potential in the context of energy scale variations. 
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1 Introduction 

 

1.1 JoKe1 (2015) puts forward the hypothesis that the energy scale can vary from 

location to location.  It shows that the flat rotation curves of spiral galaxies can be 

explained by variations in the energy scale, without the need for any dark matter.  

JoKe2 (2015) introduces an improved model of a Gaussian distribution for the 

density and a Gaussian profile for the energy scale variation.  JoKe3 (2015) applies 

this model of to a sample of 74 spiral galaxies, obtaining good fits in all cases. 

 

1.2 JoKe11 (2017) looks at energy scale variations with a Gaussian profile to see 

whether any insights could be made into the nature of the gravitational potential.  

This paper extends the work of JoKe11 (2017) ... 
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2 Energy scale variations 
 

2.1 Our hypothesis is that the energy scale can vary from location to location.  This was 

first set out in JoKe1 (2015). 

 

2.2 If we have an energy, E, at location X and an observer at location A then our 

hypothesis means 
 

 𝑬𝑨𝑿 𝝃(𝑨) =  𝑬𝑿𝑿 𝝃(𝑿)  (1) 
 

 where 𝑬𝑨𝑿 is the energy at X as measured by an observer at A;  𝑬𝑿𝑿 is the energy 

at X as measured by an observer at X;  𝝃(𝑨) is the value at A of the dimensionless 

function that describes the energy scale; 𝝃(𝑿) is the value of the dimensionless 

function at X. 

 

2.3 For masses, using  𝑬 = 𝒎 𝒄𝟐 , this becomes  
 

 {𝑴𝑨𝑿 𝒄𝟐 𝝃(𝑨)}

𝒄𝟐
=  

{𝑴𝑿𝑿 𝒄𝟐 𝝃(𝑿)}

𝒄𝟐
  (2) 

 

 

2.4 Our hypothesis is that only the energy scale that varies from location to location; i.e. 

the length scale does not vary and the time scale does not vary.  Hence the speed 

of light remains an absolute constant and the equation for mass is 
 

 
𝑴𝑨𝑿  =  𝑴𝑿𝑿  {

𝝃(𝑿)

𝝃(𝑨)
}  (3) 

 

 

2.5 In most physical situations the object and the observer are at the same location.  

For example: particle physics experiments using the Large Hadron Collider.  The 

one situation where they are in different locations is gravity.  For our hypothesis 

Newtonian gravitational acceleration is given by 
 

 
𝒓̈  =  − 

𝑮 𝑴𝑶𝑶

𝒓𝟐
 {

𝝃(𝑶)

𝝃(𝒓)
}  =  − 

𝑮 𝑴

𝒓𝟐
 {

𝝃(𝑶)

𝝃(𝒓)
}   (4) 

 

 where  𝑴𝑶𝑶 = 𝑴  is the mass of the object at O as measured by an observer at O 

(i.e. the 'intrinsic' mass);  r  is the distance;  𝝃(𝑶) the value of the ξ function at O;  

ξ(r)  the value of the ξ  function at r. 
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2.6 Equation (4) shows clearly that we are modifying Newton's law of gravity.  However, 

it still depends on the mass, and it still depends on the inverse square of the 

distance. 

 

2.7 If, at small distances, the  {𝝃(𝑶) 𝝃(𝒓)⁄ }  factor is close to 1 then our modified law 

reduces to Newton's law (as it must).  So we should not expect there to be any 

detectable differences in the neighbourhood of the gravitating mass.  For example: 

normal Newtonian gravitation should apply in the centres of all galaxies and there 

should be no requirement to invoke dark matter to explain any phenomena there. 

 

2.8 If, at large distances, the {𝝃(𝑶) 𝝃(𝒓)⁄ } factor is close to 𝝃(𝑶)  then again we have 

Newton's law with the mass M replaced by 𝑴 𝝃(𝑶).  This means the mass can 

behave as if larger than its 'intrinsic' mass.  This enables us to explain the rotation 

curves of spiral galaxies without invoking dark matter.  We simply require the 

energy scale variation to make the central mass behave as larger than its intrinsic 

value. 

 

2.9 Our hypothesis is different from allowing the gravitational constant, G, to vary.  In 

that case equation (4) can be written as 
 

 
𝒓̈  =  −  {

𝑮  𝝃(𝑶)

𝝃(𝒓)
} 

𝑴

𝒓𝟐
 =  −𝑮(𝒓)

𝑴

𝒓𝟐
 (5) 

 

 where 𝑮(𝒓) is now a varying gravitational constant.  If G varies then this has 

serious implications in other areas of physics.  For example: the hydrodynamic 

stability of stars; where the nature of different types of stars would be substantially 

different from what is observed.  In our hypothesis we assume that G is an absolute 

constant and does not vary from location to location. 

 

2.10 The choice of the 𝝃(𝒓) function that has been adopted in previous papers is a 

simple Gaussian profile sitting on top of a fixed background: 
 

 𝝃(𝒓) = 𝑨 + 𝑩  𝒆𝒙𝒑(− 𝒓𝟐 𝜶𝟐⁄  ) (6) 
 

 where (for a given energy scale variation)  A, B  are numerical constants;  α  is the 

1/e-width.  This is illustrated in Fig 1. 

 

2.11 It is convenient to write equation (6) as:  
 

 𝝃(𝒓) = 𝑨 {𝟏 + 𝜷 𝒆𝒙𝒑(− 𝒓𝟐 𝜶𝟐⁄  )} (7) 

 where 

 𝜷 =  𝑩/𝑨 (8) 
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 Figure 1.  Schematic of an Energy Scale Variation as a Gaussian, height B, 1/e-

width α , sitting on top of of background with height A. 

 

 

2.12 At the origin, when  𝒓 = 𝟎   
 

 𝝃(𝟎) = 𝑨 {𝟏 + 𝜷} (9) 
 

 

2.13 The gravitational acceleration, equation (4), now becomes 
 

 
𝒓̈  =  − 

𝑮 𝑴

𝒓𝟐
 

(𝟏 +  𝜷)

{𝟏 + 𝜷 𝒆𝒙𝒑(− 𝒓𝟐 𝜶𝟐⁄ )}
  (10) 

 

 

2.14 Near the mass, where  r  ≪ α , 
 

 𝝃(𝒓) ≈ 𝑨 {𝟏 + 𝜷} (11) 
 

 and equation (10) simplifies to 
 

 
𝒓̈  =  − 

𝑮 𝑴

𝒓𝟐
  (12) 

 

 This is normal Newtonian gravitation.  As mentioned above, our hypothesis means 

no changes to Newtonian gravitation in the region close to the gravitating mass. 
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Figure 2.  The variation of the gravitational acceleration with distance for a central point 

mass.  The upper green curve shows the Newtonian gravitational acceleration for a 

high mass of M=10; the lower blue curve is the Newtonian gravitational acceleration 

for a low mass of M=1.  The middle red curve is for an Energy Scale Variation that 

matches the green curve at large distances and matches the blue curve at small 

distances. 

 

 

2.15 Far away from the mass, where r  ≫ α , 
 

 𝝃(𝒓) = 𝑨  { 𝟏 + 𝜷 𝒆𝒙𝒑(− 𝒓𝟐 𝜶𝟐⁄ )}  ≈   𝑨 (13) 

 

 and equation (10) simplifies to 
 

 
𝒓̈  =  − 

𝑮

𝒓𝟐
 𝑴 (𝟏 + 𝜷)  (14) 

 

 This is Newtonian gravitation with the mass behaving a factor  (𝟏 + 𝜷)  larger. 

 

2.16 The behaviour of the gravitational acceleration is illustrated in Fig 2.  The green 

curve is the relative acceleration for normal Newtonian gravity (equation 12) and a 

mass of 10.  The blue curve is normal Newtonian gravity and a mass of 1.  The red 

curve is the relative acceleration (equation 10) for an energy scale variation with 

α=10 and β=9. 
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2.17 So at very small distances and at very large distances the gravitational acceleration 

has an inverse-square law behaviour and behaves in the 'correct' Newtonian 

manner.  It is only at intermediate distances that there is any departure from 

Newtonian gravitation.  It is exactly in this zone where we observe the flat rotation 

curves of spiral galaxies. 

 

2.18 Fig 2 shows that the energy scale variation acts as a 'interpolating function' between 

the two curves for normal Newtonian gravity.  There must be a large number of 

functions that have an interpolating behaviour, not just the Gaussian form we have 

assumed in equation (6). 
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3 The  gravitational  potential 
 

3.1 Our main focus in this paper is the gravitational potential simply because this is the 

usual starting point for most physical theories.  And we would like to put Energy 

Scale Variations on a firmer theoretical basis. 

 

3.2 Unfortunately we cannot integrate equation (10) analytically to give an expression 

for the gravitational potential everywhere.  But we can generate approximate 

expressions for different regions. 

 

3.3 At large distances: 𝒓 ≫ 𝜶, 𝒆𝒙𝒑 (− 𝒓𝟐 𝜶𝟐) ≈ 𝟎⁄  , and the gravitational acceleration 

is given by equation (14).  For spherical symmetry we have 
 

 
−𝛁𝝋 =  − 

𝝏𝝋

𝝏𝒓
=  − 

𝑮𝑴

𝒓
  {𝟏 +  𝜷} (15) 

 

 

3.4 The gravitation potential is then given by 
 

 

𝝋 =  ∫
𝑮𝑴

𝒓
  {𝟏 +  𝜷}

𝒓

∞

 𝒅𝒓 (16) 

 

 which is integrated readily to give 
 

 
𝝋 =  − 

𝑮𝑴

𝒓
  {𝟏 +  𝜷} (17) 

 

 assuming  φ  goes to zero at infinity. 

 

3.5 This is the usual Newtonian gravitational potential, but with the central mass 

behaving as if it were a factor  {𝟏 + 𝜷}  larger.  This is illustrated by the green 

curve in Figure 3. 

 

3.7 At small distances: 𝒓 ≪ 𝜶, 𝒆𝒙𝒑 (− 𝒓𝟐 𝜶𝟐) ≈ 𝟏⁄  , and the gravitational acceleration 

is given by equation (12).  The integration is now 
 

 

𝝋 =  ∫
𝑮𝑴

𝒓
  

𝒓

𝑹

𝒅𝒓 +  ∫
𝑮 𝑴

𝒓𝟐
 {

𝝃(𝑶)

𝝃(𝒓)
}  𝒅𝒓

𝑹

∞

 (18) 

 

 where  R  denotes the limit of the region where equation (12) holds. 
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Figure 3.  The variation of the gravitational potential with distance for a central point mass.  

The curves are the integration of the curves in Figure 2.  The upper green curve is 

the Newtonian gravitational potential for a high mass of M=10; the lower blue curve 

is the Newtonian gravitational potential for a low mass of M=1.  The middle red 

curve is for an Energy Scale Variation that matches the green curve at large 

distances and matches the blue curve at small distances. 

 

 

3.8 Equation (18) is integrated readily to give 
 

 
𝝋 =  − 

𝑮𝑴

𝒓
 + 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕  (19) 

 

 Again this is the usual Newtonian gravitational potential with the central mass 

behaving normally.  It is illustrated by the blue curve in Figure 3.  However, we now 

have a constant of integration, which is not zero.  This arises because the regime 

where equation (12) holds is for very small distances, so it is no longer valid to 

integrate in from infinity. 

 

3.9 The constant in equation (19) is somewhat problematic.  It means we can never 

approximate the gravitation potential at small distances to the Newtonian potential.  

In the interpolation zone we also do not have an algebraic expression for the 

gravitational potential.  The only region where we have an acceptable expression 

for the gravitational potential is in the far field. 
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4.0 At small distances differences in the gravitational potential do approximate well to 

those for Newtonian gravity.  But these differences are essentially the gravitational 

acceleration as defined by equation (10). 

 

4.1 So our overall conclusion has to be that we have a good algebraic approximation for 

the gravitational acceleration but not for the gravitational potential.  If theoretical 

considerations require the gravitation potential then we are not in a good position.  

However, if the theory only needs the gradient of the gravitational potential then we 

are in business. 
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4 General  Relativity 
 

4.1 Einstein's General Relativity is generally accepted to be our best theory of 

gravitation.  So we need to examine whether the hypothesis of energy scale 

variations is compatible with it. 

 

4.2 Many text books on General Relativity derive Einstein's field equations without any 

reference to the gravitational potential of the remote mass, M.  The field equations 

can be written as 
 

 𝑮𝝀𝝁  =  𝒌  𝑻𝝀𝝁  (20) 
 

 where  𝑮𝝀𝝁  is the Einstein tensor describing the curvature of space-time;  𝑻𝝀𝝁  is 

the energy-momentum tensor;  k  is a constant to be determined.  𝑮𝝀𝝁  in turn 

depends on the metric tensor,  𝒈𝝀𝝁.   

 

4.3 The spatial part of the geodesic equation in the Newtonian limit is 
 

 𝒅𝟐𝒙𝜶

𝒅𝒕𝟐
 = −

𝒄𝟐

𝟐
 
𝝏𝒈𝟎𝟎

𝝏𝒙𝜶
  (21) 

 

 where  𝒙𝜶  is a spatial coordinate;  𝒈𝟎𝟎  is the 00 component of the metric tensor. 

 

4.4 Equation (21) is compared to Newton's law of gravity 
 

 𝒅𝟐𝒙𝜶

𝒅𝒕𝟐
 = −

𝝏𝝋

𝝏𝒙𝜶
  (22) 

 

 where  φ  is the gravitational potential.  This leads to the Newtonian limit of 
 

 
𝒈𝟎𝟎  = 𝟏 + 

𝟐 𝝋

𝒄𝟐
+ … (23) 

 

 since, at large distances, we have  𝝋 → 𝟎  and  𝒈𝟎𝟎 → 𝟏. 

 

4.5 Equation (23) is the first point at which the gravitational potential of a distant mass 

enters into General Relativity.  By this stage all the really hard stuff of tensor 

calculus, curved manifolds, and the energy-momentum tensor has been been dealt 

with.  The gravitational potential enters almost as an after-thought. 
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4.6 For large distances the Newtonian gravitation acceleration is given by 
 

 
− 𝜵𝝋 =  −

𝝏𝝋

𝝏𝒓
 =  − 

𝑮 𝑴

𝒓𝟐
 (24) 

 

 This fixes the constant in equation (20) as 
 

 
𝒌 =  

𝟖 𝝅 𝑮

𝒄𝟒
 (25) 

 

 

4.7 For our hypothesis of energy scale variations we do not have a simple algebraic 

expression for the gravitational potential, φ.  However, equation (21) depends on 

the gradient of the potential, ∇φ, for which we do have an algebraic approximation 
 

 𝝏𝝋

𝝏𝒓
 =  − 

𝑮 𝑴

𝒓𝟐
 (𝟏 + 𝜷) (26) 

 

 

4.8 Hence, in the Newtonian limit of large distances, General Relativity should still hold 

but with the mass, M, replaced by M(1+β) .  So our hypothesis of energy scale 

variations is compatible with General Relativity. 
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5 Discussion 
 

5.1 Scalar-tensor theory 

 The function  𝝃(𝒓)  introduced in equation (4) describes the variation of the energy 

scale from location to location.  It is a scalar function of position.  In Einstein's 

theory of general relativity the gravitational field is described by the metric tensor 

and so, by definition, general relativity is a tensor theory.  It can be argued that our 

introduction of a scalar function means we should be looking for a scalar-tensor 

theory of gravity, along the lines of the Brans-Dicke theory.  However, we argue that 

we are not changing gravity, instead we are changing the energy scale and so we 

do not need to consider moving to a scalar-tensor theory.  If some phenomenon, 

other that gravity, is found to depend on the energy scale then we would not have to 

introduce a new scalar field into that phenomenon.  We would again argue that we 

are not changing the way that phenomenon works but simply changing the energy 

scale. 

 

5.2 An action principle 

 What we would really like to do is formulate the hypothesis of energy scale 

variations in terms of an action principle and then apply the Principle of Least 

Action.  This requires us to have an expression for the Lagrangian, which currently 

we do not have because we do not have a suitable expression for the gravitational 

potential.  However, the Euler-Lagrange equations that come from applying the 

Principle of Least Action depend on the derivatives of the gravitation potential and 

not on the potential itself.  This derivative is simply the gravitational force and we do 

have an (assumed) expression for this.  Lagrangian mechanics and the Principle of 

Least Action for the rotation curves of spiral galaxies are discussed in paper JoKe18 

(May 2018). 

 

5.3 In conclusion: we do not have an analytical expression for the form of the 

gravitational potential under the regime of energy scale variations.  We do have an 

expression for the gravitation acceleration that covers the low-velocity far-field 

regime. 
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